On graphs with at least three distance eigenvalues less than −1
نویسندگان
چکیده
منابع مشابه
Graphs with three distinct eigenvalues and largest eigenvalue less than
Article history: Received 13 June 2008 Accepted 13 November 2008 Available online xxxx Submitted by R.A. Brualdi AMS classification: 05C50
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملOn graphs with three eigenvalues
We consider undirected non-regular connected graphs without loops and multiple edges (other than complete bipartite graphs) which have exactly three distinct eigenvalues (such graphs are called non-standard graphs). The interest in these graphs is motivated by the questions posed by W. Haemers during the 15th British Combinatorial Conference (Stirling, July 1995); the main question concerned th...
متن کاملOn distance-regular graphs with smallest eigenvalue at least -m
A non-complete geometric distance-regular graph is the point graph of a partial geometry in which the set of lines is a set of Delsarte cliques. In this paper, we prove that for fixed integer m ≥ 2, there are only finitely many non-geometric distance-regular graphs with smallest eigenvalue at least −m, diameter at least three and intersection number c2 ≥ 2.
متن کاملNonsingular unicyclic mixed graphs with at most three eigenvalues greater than two
This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.06.040